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Abstract. A new efficient Monte Carlo technique is developed and tested using the 2D 
Ising model for which exact solutions are known. The new technique calculates continu- 
ous thermodynamic functions of continuous thermodynamic variables from independent 
samples taken within an interval of typically a few hundredths of a Monte Carlo step per 
spin. The new technique is not only efficient and accurate but also furnishes some new 
information concerning the relationship between canonical and microcanonical averages 
for finite systems. It also furnishes primary thermodynamic functions such as  free energy 
directly from the Monte Carlo data, a feature not available in the conventional Monte 
Carlo method. 

1. Introduction 

Thanks to the recent development of enormous computing power together with the well 
established finite-size scaling theory, numerical methods, especially the Monte Carlo 
technique (which will be abbreviated as MCT hereafter), have become popular tools 
for the investigation of various statistical mechanical problems. While efforts are being 
made to take advantage of top of the line supercomputers or to develop special purpose 
processors (Pearson et al 1983, Hoogland er a1 1983) to deal with specific statistical 
mechanical problems, some slow progress and changes have also been made (Creutz 
1983, Swendsen and Wang 1987, Bhanot er a1 1987a, b, Ferrenberg and Swendsen 1988) 
in the fundamental aspect of MCT since the first time when Metropolis et a1 (1953) 
introduced the technique based on the idea of ‘importance sampling’. 

Is the conventional MCT the most efficient to calculate thermodynamic quantities 
of finite-sized systems? Suppose we wish to calculate thermodynamic quantities of 
a given system at two nearby temperatures. In the conventional MCT one has to 
generate equilibrium configurations for sampling for each temperature independently. 
The underlying assumption of the conventional MCT is that microscopic configurations, 
which predominantly contribute to canonical averages, are quite different so that at 
each temperature a new set of equilibrium configurations needs to be generated. If we 
wish to calculate a thermodynamic quantity as a continuous function of a continuous 
temperature variable, we have to generate an infinite set of equilibrium configurations 
corresponding to the temperature variable. However there cannot be an infinite set of 
different configurations in a finite-sized system with a finite number of energy levels 
for each degree of freedom. For example, if our system is a spin-; Ising model with 
N spins there are a total of only 2N microscopic configurations, which is not infinite, 
although it is extremely large even for moderate N .  Therefore there must be some 
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way to calculate continuous thermodynamic functions without generating an infinite 
number of sets of microscopic configurations. 

The new method proposed in this paper is based on this observation and eliminates 
the repetitive realisation of the same microscopic configuration to make the method 
efficient. To accomplish this objective we generate microscopic configurations of 
fixed energy for the purpose of data taking, although we eventually take canonical 
averages. The method is similar to that developed recently by Bhanot et al (1987a). 
However, in the present method, a finely tuned sampling algorithm allows us to take 
samples from freshly generated configurations with the shortest time interval, typically 
of a few hundredths of an MC step, thereby enhancing the efficiency of the MC 
simulation tremendously, Sampling from configurations constrained by some constant 
energies has been attempted by Cruetz (1983). However in his attempt, he calculates 
microcanonical averages instead of canonical averages which the conventional MCT 
calculates. In the new method we calculate canonical averages although we calculate 
microcanonical averages as a preliminary procedure. Temperatures come in as an input 
as in the conventional MCT, which is to be contrasted with the microcanonical MCT of 
Creutz (1983). 

As will be shown later in this paper the canonical averaging yields smooth results 
for a typical finite-sized system because they are averaged over quite large energy 
intervals especially near the critical temperature! (The system susceptible to MCT is 
too small to apply the central-limit theorem yet.) Bhanot et a1 (1987a, b) proposed a 
similar idea and calculated the critical exponent v for the three-dimensional Ising model. 
However, their simulations arc limited to the calculation of Q ( E ) ,  the total number of 
configurations with fixed energy E and the calculation of microcanonical averages of 
thermodynamic functions such as magnetisation was not attempted. Our method in 
this paper has a subtle but crucial difference from that of Bhanot et a1 (1987a) in that 
it furnishes independent samples within a very short time interval, which is crucial for 
the accurate calculation of microcanonical averages such as magnetisation. Recently 
Ferrenberg and Swendsen (1988) also proposed a closely related approach. However 
they used the conventional MCT for data taking in order to extract extra information 
contained in the simulation data for the single temperature point. 

In this paper we present our own version of the new MCT, which allows us to take 
independent samples within a very short time interval, typically a few hundredths of a 
MC step, together with the results of the efficiency and accuracy tests of the technique 
using the two-dimensional Ising model for which exact solutions are known. The new 
method not only is efficient and accurate but also furnishes some new information 
concerning the relationship between the canonical and microcanonical averages for 
finite systems. 

We begin by reviewing the new MCT in the next section and present the results of 
the calculation done on the 2D Ising model in section 3. The accuracy is shown by 
comparing the results with the exact solutions wherever available. In section 4 we will 
discuss the efficiency of the new MCT together with its advantage over the conventional 
MCT. The final section is devoted to a summary and further remarks concerning the 
new method. 

2. New Monte Carlo technique 

In order to illustrate the new method let us take as an example a spin-; Ising model of 
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N spins in the absence of an external field. The energy of the system can be written as 

where Si is the spin variable assuming *I values, J is the exchange energy and ( i , j )  
runs over interacting nearest-neighbour pairs i, j .  The canonical average ( A )  of any 
thermodynamic quantity A ( { S i } )  is defined by 

where p is the inverse temperature l / k T  with Boltzmann's constant k and Q is the 
partition function defined by 

We can rewrite (2) and (3) in slightly different forms as 

and 

where Z(E) is the microcanonical average of the variable A defined by 

and R(E) is the total number of configurations with a fixed E. The prime in (6)  
indicates that the summation is over microscopic configurations with fixed E .  From 
this point of view, the calculation of ( A )  is reduced to the calculations of R(E) and 
microcanonical average Z(E). 

Let q, N f  and N + +  be the coordination number, the total number of up-spins, 
and the total number of interacting up-spin pairs respectively. Then the energy of the 
system can be written as 

E = -4J(N++ - f q N + )  (7) 

where the constant term i J q N  has been dropped. Therefore configurations with 
constant E can be generated by keeping N + +  - i q N +  constant. In this description, the 
lowest energy, E, = E ( N + +  = 0, N +  = 0) = 0 and highest energy, E,,, = E(T  = CO) = 
i J q N  so that there are only q N / 8  discrete energies separated by AE 4 5 .  Therefore 



2090 K-C Lee 

we only need to generate q N / 8  independent sets of configurations to evaluate O ( E )  
and A@). The crux of the new technique is how to evaluate A ( E j )  and Q ( E j )  efficiently. 
The subtle but crucial difference of our method from that of Bhanot et a1 (1987a, b) 
is that we set up a random walk through a configuration space restricted to a narrow 
energy band given by 

and use, for data taking, configurations which satisfy 

E ( { & } )  = E j  and E ( { S , } )  = E j  + A E .  

As will be explained later, only by this elaboration can it be guaranteed that the 
samples from which data are taken are independent configurations. In contrast to our 
sampling technique, Bhanot et a1 set up a random walk on the energy band made of 
four consecutive energy layers and took data from all four energy layers. Since there is 
no guarantee that samples are all different from each other in this algorithm, samples 
must be taken with very large time intervals at a heavy cost to the efficiency in order 
to get statistically independent samples for the calculation of thermodynamic averages 
such as magnetisation. 

We will sketch briefly the new algorithm. We first generate an initial spin config- 
uration {Si} with given energy E ( { S i } ) .  We start a random walk by a single spin-flip 
algorithm as follows. We select a single spin out of N spins either randomly or sequen- 
tially and attempt to flip it. Whenever the attempted move takes the walker to a spin 
configuration {Si} which lies within the energy band (8) the move is allowed; otherwise 
the move is rejected. Whenever the walker visits points in the configuration space 
satisfying the energy value given by (9), relevant information such as N +  is sampled 
together with the total number of visits. The last information is a vital key to the new 
method which allows us to evaluate canonical averages. 

The random walk we set up by this method is very much like the one used in the 
microcanonical MCT of Creutz (1983) except for the energy constraint. The allowance of 
i 4 A E  energy width in (8) is crucial for the accurate determination of the distribution of 
N +  although it is less so for the estimate of R(E+AE)/R(E) as was done in Bhanot et a1 
(1987a, b). The reason is as follows. Since the energy change 6 E  produced by the single 
spin-flip move from the original configuration is restricted to a range [ - i q A E ,  i q A E ] ,  
the allowance of the energy width ensures that the next spin-flip move after sampling 
always lie within the energy band given by (8). Therefore the walker moves immediately 
away from the previously sampled configuration thereby eliminating the possibility of 
repeated sampling of the same configuration. The possibility of such repeated sampling 
is especially severe at low E values where the rejection rate is very high. This allowance 
of the energy width also enables the walker to escape trapping in metastable states if 
any. However an allowance of an energy width larger than IqAE rapidly makes the 
MC process inefficient as will become clear in the efficiency discussion of section 4. 

As long as we are interested in macroscopic thermodynamic functions or derivatives 
such as internal energy or susceptibility we only need to calculate the number of 
configurations, w ( E , N + )  of fixed E and N +  since the A ( { S i } )  corresponding to these 
quantities depend only on N + ,  so that n(E) and A ( E )  are calculable from o ( E ,  N + )  by 

O(E) = @ ( E ,  N + )  
N +  



A new eflcient Monte Carlo technique 2091 

and 

In order to calculate o ( E , N + ) ,  we run this random walk starting from the lowest 
energy E,  to the highest energy E,,,. Since we know w ( E , , N + ) ,  namely o ( E , N + )  = 
B N + , ,  + B N , ,  so that R(E,) = 2 (in practice we can calculate some further o ( E ,  N + )  for 
low-lying E by hand so that we can start the random walk and taking data from some 
higher E ;  see the discussion in section 5 and appendix I),  we can estimate w ( E , N + )  
successively in the following way. We count n ( E ,  N + )  and n(E+AE,  N + ) ,  the numbers of 
configurations of two neighbouring energies with given N +  visited by the random walker 
in the configuration space given by (9). Let Nd and Nd+ be the total number of points 
visited with energy E and E + A E ,  i.e. Nd = x n ( E ,  N + )  and Nd+ = x n ( E  + A E ,  N + ) .  
Then we have R(E + A E )  = Q(E)Nd+/Nd and o ( E , N + )  = R ( E ) n ( E , N + ) / N d .  This 
completes the new Ma. 

3. Monte Carlo results 

In order to test the efficiency of the new method we took an N = 30 x 30 square 
lattice with toroidal boundary condition and obtained data using a PC. We compared 
the results from the data with the exact calculation of Kaufman (1949) for finite- 
sized lattices using the formula given by Ferdinand and Fisher (1969) .  We also 
calculated the magnetisation and susceptibility and compared them with Onsagar's 
exact magnetisation (Yang 1952) for an infinite system and the asymptotic susceptibility 
expression for infinite systems of Barouch et a/ (1973) .  

For the sake of simplicity in the discussion below, we will denote E / A E  by Ne and 
a function A ( E )  by A ( N e )  indiscriminately so that R ( N e )  is the same as R ( E )  where 
E = NeAE = 4 J N e .  For N = 900, Ne runs from 0 to 450 for the ferromagnetic or 
positive temperature side. In the first run the random walk was stopped at Nd = 20 OOO 
for all Ne.  However Nd samples taken at the energy band with Ne - 1 are added to the 
Nd+ samples for the calculation of microcanonical averages making the total number 
of samples for each Ne,  

N d ( l  + R ( N e  - l ) )  (10) 

where R ( N e )  = R(Ne + l ) / R ( N e )  N Ndf/Nd.  
Since R ( N , )  decreases as Ne increases as can be seen from table 1 of appendix 2, 

the number of samples for each Ne is not uniform although N ,  is uniform in this work. 
It is always possible to control Nd according to the demanded degree of accuracy at a 
given thermodynamic domain. As an example, we have performed a run with an extra 
50 OOO Nd in the energy range Ne E (80 ,249) ,  which contributes to the critical region 
significantly, to obtain a more accurate estimate of the thermodynamic functions in 
the critical region. In our data taking, samples taken with N +  > N / 2  are put to 
n(N,, N +  - N / 2 )  since o ( N , ,  N + )  is symmetric about N +  = N / 2 ,  so that all raw data 
about distribution of the order parameter N +  is restricted to Nf E [0, N / 2 ] .  

In figure 1 the free energy, internal energy, entropy and specific heat are plotted 
superimposed on exact curves. On this scale deviations from the exact curves are not 
visible except for the specific heat where the exact curve (thin line) is barely discernible 
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in a few places, In order to show the numerical values of these deviations we plot in 
figure 2(a) the relative deviation, defined by (AMc - Aexact)/Aexact, which measures the 
precision of the result, in the critical region. In figure 2(b), similar curves to figure 2(a) 
are plotted using reinforced data. By visual inspection alone we can say that the 
precision is remarkably improved. Average absolute deviations are calculated using 
values from 100 uniformly spaced points by the formula: 

They are 1.31  x lo4, 4.57 x for the free energy, 
internal energy, entropy and specific heat in figure 2(a) and 0.98 x 2.38 x lo4, 
5.50 x lo4 and 2.53 x lop3 for the same quantities in figure 2(b) respectively. As figure 
2(b) shows, these precisions are equal to or even better than that of the conventional 
MCT that uses a special purpose processor (Hoogland 1983) for N = 16 x 16 and 
N = 32 x 32 lattices (of comparable size with our system). We will show in the next 
section that the time it takes to complete our result is only a fraction of the time it 
takes to get data for a single temperature point using a conventional MCT. Except for 
figure 2(b) all the plots (figures 14 and 8) are with first run data to give the reader 
the general idea of the efficiency and accuracy. 

10.95 x lo4 and 6.69 x 

kT/J 4.w K 
1 .w 

Figure 1. Free energy (a), internal energy (b), entropy (c) and specific heat (d) per spin 
plotted against temperature. (y l , y2 )  = (-3,-2), (-2.5,0.5), (0 , l )  and (0,2) for a, b, c and 
d respectively. The vertical bar marks T,, the critical temperature of the infinite system. 

The internal energy is calculated using the canonical average, ( E ) / ( J / N )  - 4 / 2 ,  
and specific heat is calculated using the fluctuation formula, f i ( ( E 2 )  - ( E ) 2 ) / N ,  in these 
figures. However numerical derivatives from the free energy yield almost the same 
result. In figure 3 we plot magnetisation M and reduced susceptibility x on a semi-log 
scale together with the exact magnetisation (Yang 1952) and asymptotic susceptibility 
of an infinite system (Barouch 1973). The deviation from the exact susceptibility curve 
on the low-temperature side is due to the fact that the exact susceptibility is known 
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kT/J 2.5 
( a )  (b) 

Y1 
2.0 

Figure 2. The relative deviation from the exact values, (AMC -Aexact)/Aexact plotted against 
temperature. Symbols are the same as figure 1. (yl,y2) = (-2 x 10-3,2 x for a, b, 
c and (-2 x 10-*,2 x lo-*) for d. ( a )  The result with the first run data. ( b )  The same 
quantities with reinforced data for € /4J  E [80,249]. Circles (energy) and triangles (specific 
heat) represent the typical accuracy of conventional MC result at temperatures 2.2 and 2.4 
for 16 x 16 square lattice (from Hoogland 1983). 

Figure 3. Magnetisation and susceptibility per spin plotted against temperature. Thin lines 
are exact magnetisation (Yang 1952) and exact asymptotic susceptibility curve of infinite 
system (Barouch et al 1973). 

only in the asymptotic form as x = C;e7I4 + C ~ E ~ / ~ ,  wherc E = 11 - TJTI.  The MC 
curve must be close to the true susceptibility values of an infinite system in this region. 

In figure 4 we plot M and x against E on a log-log scale. Along the magnetisation 
curve the exact M ( E )  and its asymptotic curve given by M = {-25/21n(fi - 1 ) ~ } ' / ~  
of an infinite system are plotted. Alongside the two x' curves the exact asymptotic 
curve x = C,$s7/4 is plotted. From figure 4 one can easily estimate the susceptibility 
exponent 7 on the high-temperature side without even resorting to the finite-size scaling 
analysis. For the low-temperature side, however, the temperature range between the 
beginning of the asymptotic region and the beginning the finite-size rounding is too 
narrow to estimate the critical exponent of the infinite system. In fact, at this lattice 
size the finite-size rounding occurs before the asymptotic region is reached denying a 
direct estimate of the magnetisation exponent. In figures 3 and 4, M is defined by 
M = (I(N - 2 N + ) ( ) / N  and 

x = 4 ( ( ( ~ + ) ~ )  - ( N + ) ~ ) / N  for T T, (1 1) 
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l l l l l l  I , I 

0.50 8 0.01 

Figure 4. Log-log plot of M and x against c. (y1,yZ) = (-0.5.1) for InM and (1.0,6.0) 
for Inx of T > Tc (left) and (-1.5.3.5)T < Tc (right). For the magnetisation the exact 
magnetisation curve and its asymptotic curve for an infinite system are plotted as dotted 
lines. For the two MC x* curves the exact asymptotic curve x* = C$E-'/~ of Barouch et a1 
(1973) for an infinite system is plotted as dotted lines. 

but 

= 4((N')')/N for T > T,. (12) 

Figure 5 shows microcanonical energy E = N,AE and entropy S ( N e )  = klnR(N,) 
plotted against microcanonical temperature k T / J  = 4/[ln(R(Ne + l)/R(NJ)]. There 
are only qN/8 points for microcanonical quantities. It is interesting to note that in 
spite of the irregular behaviour of the microcanonical entropies and temperatures at 
low energies (see also table 1 of appendix 2) they give rise to smooth well behaving 
thermodynamic functions when they are averaged canonically. In figure 6 we plot the 
normalised canonical weight factor R(N,) exp(-/?N,AE)/Q against Ne for six typical 
temperatures, kT/J  = 1.5, 2.2, 2.2692 (= T J ,  2.4, 4 and 15. Notice that at the critical 
temperature configurations within 1/3 of the available energies (60 210) contribute to 
the canonical averages! Furthermore configurations with Ne values ranging from 100 
to 175 contribute to the thermodynamic averages significantly at two fairly separated 
temperatures 2.2 and 2.4 of figure 2(b). This proves the point mentioned in the intro- 
duction that many of the configurations contributing to the thermodynamic averages 
at nearby temperatures must overlap. 

4. Efficiency analysis 

In this section we will discuss the efficiency of the new MCT and its advantages over 
the conventional MCT. Let us first consider the number of spin-flip attempts necessary 
to obtain a set of data for single Ne with given Nd. The configuration space spanned 
by a random walker given by (8) consists of (q + 2) energy layers. The total number of 
spin-flip trials per data is on average the ratio of the total number of configurations 
to Q(N,), i.e. 



A new eflcient Monte Carlo technique 2095 

.M 

Figure 5. The microcanonical internal energy and entropy plotted against temperature. The 
symbols and scale are the same as figure 1. Thin full curves are exact canonical values. 

Figure 6. The scaled canonical weight factor R(E) exp(-BE) plotted against Ne = E/4J for 
temperatures k T / J  = 1.5, 2.0, 2.2692 (7'& 2.4, 4.0 and 15. 

Therefore the average number of spin-flip trials to obtain Nd data for an Ne is given 
by : 

k=-2 

We estimated these numbers using our knowledge of R(N,) and compared them with 
the actual time it took to perform in the random walk run. We did this for three 
typical values of N e :  7, 120 and 280. The estimated numbers are 8737, 241 and 60, 
while the actual numbers of spin-flip trials it took for each Nd are 8471, 244 and 61 
which is in agreement within a few per cent. Incidentally this fact suggests that one 
can count the time the random walker spends at each energy layer in the band (9) 
without any restriction for data taking to estimate R(N,) or even perform sampling to 
estimate o ( N , , N + ) .  However, if we do so, repeated counting of the same configuration 
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in case the spin-flip attempt fails would mean the data was of poor statistical quality 
unless the sampling is done at large time intervals. 

The estimated total number of spin-flip trials to obtain this set of data (Ne E [5,450]) 
is calculated using Nd = 20 OOO, except Nd = 70 OOO for Ne values ranging 80 to 249. 
It is 0.39 x 10”. 

On the other hand Hoogland et a1 (1983) made 20 series of observations, each 
of which comprises 25 OOO samples taken with an interval of 32 MC steps per spin 
in order to obtain data at a single temperature, such as a single pair of circle and 
triangle as in figure 2(b). Had we carried out a similar simulation, we would have 
attempted 20 (series of observation) x 25 OOO (samples) x 32 (MC steps per spin) x 900 
(spin-flip trials) = 1.44 x loLo trials in order to obtain data at a single temperature 
since the number of lattice sites in our system is 900. In other words, we can determine 
whole thermodynamic functions with only a quarter of the effort that is needed to 
obtain a single data point in the conventional MC method! Furthermore the new 
technique requires less than half the effort since in this new technique one needs only 
to calculate 6 E  to decide whether to allow or reject the move. On the other hand in 
the conventional MCT, one has to calculate not only the 6 E  of the attempted spin-flip 
move, but also perform an extra comparison with a random number for the decision 
which is necessary to attain the equilibrium canonical distribution. 

The advantages of this new method besides the points we have mentioned already 
are (i) the algorithm consists of only integer operations which are best suited to digital 
computers; (ii) it is extremely lenient in its demands on the random number generator 
since the complexity of the system itself serves as a random number generator; and 
(iii) there is no critical slowing down because the configuration space is restricted to a 
narrow energy band at each separate energy. 

In order to demonstrate the second point, we have carried out the sampling run by 
selecting lattice sites sequentially for the spin-flip trial, eliminating the random number 
generator entirely except for the generation of a random initial spin configuration of 
given E .  We compared these raw data with those of the random selection method. 
The sequential selection technique works very well except at extremely small Ne values 
where the configurations are not complex enough since only few spins are upturned. 
Comparisons are made at two values of N e ,  121 and 281. We detect no difference at all 
in the quality of the data. Indeed the raw data, which give the normalised distribution 
function of the order parameter, n(Ne ,  Nf)/N, approach a common smooth distribution 
as the number of data Nd increases as figures 7 and 9 clearly show. 

In order to expatiate the last point, the absence of critical slowing down, let 
us examine the origin of the difficulty in the conventional MCT at criticality. It is 
due to large fluctuations which cause adverse effects in two ways. Because of large 
fluctuations in energy and magnetisation in the critical region, the realisation of a 
canonical ensemble by some simulated ‘thermal motion’ takes a long time. Secondly 
since the energy and magnetisation variables are spread over a wide range at criticality 
as is clear from figures 6 and 8(a), a large number of samplings would be required 
to calculate the thermodynamic averages of the quantities of interest with reasonable 
accuracy. 

The new technique avoids the first problem altogether since we do not realise 
a canonical ensemble by some simulated ‘thermal motion’ but generate a uniform 
distribution in a narrow energy band, namely a microcanonical ensemble for data 
taking. The second problem is also naturally solved in the new technique. Although 
we take the same amount of data for all N e ,  a large number of data points naturally 
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Figure 7. Two plots of MC data for the normalised distribution function of the order 
parameter, n ( N e . N + ) / N d ,  which were obtained with the sequential selection method (bold 
dots) and the random selection method (small dots). ( a )  Nd = 1.2 x lo5 for Ne = 121 and 
Nd = 7 x io4 for N~ = 281. ( b )  There are 50 times more Nd than in ( a ) ,  i.e. Nd = 6 x lo6 
and 3.5 x lo6. The scales are the same for both figures. (See also figure 9 for another 
example of data obtained using the sequential selection method.) 

contribute to the canonical average of the thermodynamic functions in the critical 
region because of large fluctuations in energy as figure 6 clearly indicates. Therefore 
as figures 1 and 2 shows no change in precision near the critical region although the 
number of data Nd are uniform for all N e .  Actually the precision in the critical region 
is even enhanced compared with the high and low temperature regions because of this 
effect. In figure 8(a) we show that raw data n ( N e , N f ) / N d  for several Ne values, namely 
51, 121, 165, 281 and 419 for the same number of data N d .  In general the quality of 
the data gets poorer as Ne increases because the total number of data (13) decreases. 
Actually, for the ‘critical’ Ne value (2: 160) for which the fluctuation, 9 - F2, is 
largest, the quality of the raw data is poorest if we fix the number of data N ,  to 
be uniform for all Ne.  This is because o ( E , N + )  spreads over a wide range of N +  at 
criticality and the number of samples for each N +  becomes small compared with that 
for low or high Ne values, where w(E,  N + )  is rather sharply peaked thereby increasing 
the statistical error. However, even this effect is overcome by the effect discussed in 
the last paragraph. In a sense the difficulty caused by the large fluctuations in the 
magnetisation is resolved by the large fluctuations of energy in the new MCT. 

To be more specific let us consider this behaviour at T = T, in detail. We can 
show that Ne for which the canonical weight factor exceeds 50% of the peak value 
which occurs at Ne = 121 ranges from 98 to 154, and above 25%, 88 to 167. Now 
we can estimate the total number of samples contributing to thermodynamic averages 
at T,. The number of samples at Ne = 121 with R ( N e )  = 5.8 is, by formula (lo), 
476 OOO, and if we assume data af 50 Ne contributing to the average, the total number 
becomes 23 800 OOO. And all these samples are from freshly generated configurations! 
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IO 

Figure 8. ( a )  MC data for the normalised distribution functions of the order parameter 
at Ne = 51, 121, 165, 281 and 419. ( b )  Canonical average of the distribution function at 
temperatures 1.5, 2.2692 (Tc),  4.0 and 15.0 from the left. The scales are the same for both 
figures. These data are taken with the sequential sampling method without the use of a 
random number generator. All the random nature in this data taking process is contained 
in the single random initial configuration. 

In figure 8(b) we plot the canonically averaged distribution function of the order 
parameter, the significance of which was discussed recently in conjunction with the 
finite-size test of hyperscaling (Binder et a1 1985, Barber et a1 1985), at four typical 
temperatures, 1.5, 2.2692, 4.0 and 15. They all look smooth, well behaving functions 
although they are all from the fuzzy looking raw data of figure 8(a). Indeed if the 
number of data approaches this size even the raw data for a single Ne itself shows 
smoothness of comparable quality as can be seen in figure 9. 

In short, data taking with a uniform number of Nd for each Ne has no special 
adverse effect when E passes critical ‘Ec’ to get thermodynamic functions of more or less 
uniform precision, which is our assertion about the absence of critical slowing down. 

We will make a brief analysis of the effective MC steps per spin used in this 
new scheme. Since we only have control over the sampling of freshly generated 
configurations because of the allowance of the energy width given by (8) and (9), we 
can obtain a large number of samplings without any risk of repeated sampling of the 
same configuration within a much shorter time interval (the number of spin-flip trials). 
Indeed we can estimate the effective ‘MC step per spin’ of this technique. Let us take as 
a typical example Ne = 160 which may be considered as the ‘critical Ne’ and estimate 
the number of spin-flip trials to obtain a single data point near this Ne value. From 
table 1 of appendix 2, we know N ,  = 205 which is the average number of spin-flip 
trials between two consecutive visits on the energy layer of Ne = 160, and R(N,) = 5.51 
which is the the average number of visits on the energy layer of Ne + 1 = 161 in this 
same time interval. Therefore the average number of samples taken within the time 
interval N ,  is 6.51 (see (10)) and the average time interval between two samples used 
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Figure 9. Normalised distribution function for various levels of the total number of data 
Nd. Plots (in small dots) are for n+(N,,N+)/N: at (a) Nd = 2000, ( b )  20 OOO, (c) 200 OOO 
and ( d )  2 OOO OOO, superimposed with a plot at Nd = 4 OOO OOO (in bold dots). The scales 
are the same for all four figures. 

for data is NJ(1 + R ( N e ) )  = 205/6.51 = 31.5 which is equivalent to 31.5/900 = 0.035 
‘MC steps per spin’. 

At first one might get a little suspicious of getting data of such quality on samples 
taken with such a short time interval. To see the dynamics of this sampling scheme, 
we watched the dynamical aspect of the random walk on the computer. Although 
N +  does not change very much between two successive samples, they are nonetheless 
independent and furnish information on the local distribution of the order parameter. 
Subsequently if N ,  is sufficiently large, the random walker sweeps configurations of 
the accessible range of N +  (at most N = 900 and usually it is less than N at any N e )  
so many times that the fuzziness of raw data decreases and the distribution function 
approaches a rather smooth and sharply defined function. Although the dynamics may 
depend on the structure of configuration space (such as the existence of metastable 
states), our contention is that if n(Ne, N + )  (E Nd(1 + R ( N e ) ) / N )  is sufficiently large we 
would get the distribution function of the order parameter within the statistical error. 
In figure 9 we plot the raw data with varying N ,  near the ‘critical’ Ne value, i.e. 164, to 
show how the sampled distribution function approaches a smooth, well defined curve 
as the Nd increases. Data in these figures are obtained using a sequential selection 
method for the spin sites. 

Lastly we should remark that expanding the energy band (8) would lower the 
efficiency drastically. The reason is that the ratio of the two numbers of data at the 
highest energy and the lowest energy in the same band, R(Ne)”,  n + 1 being the number 
of the data-taking energy layer (n 2 2), is too big, and in order to obtain data on 
the lowest energy layer would make the number of data of the highest energy layer 
unnecessarily large, wasting much MC time. 
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5. Conclusion and discussion 

In this paper we have shown that the new MCT is simple, accurate and efficient. 
With only a fraction of the effort that is needed to obtain a single data point in the 
conventional MCT, one can calculate whole thermodynamic functions including free 
energy and entropy functions. The origin of the accuracy and efficiency is due to 
two facts. In the new MC method the canonical ensemble is not generated by some 
‘simulated thermal motion’ but input from the information obtained using a much 
simpler sampling scheme in the microcanonical ensemble. Secondly sampling from 
the microcanonical ensemble allows us to control the sampling method best suited for 
high quality of data such as allowing a small width in the energy band so that all 
the configurations sampled are independent, while keeping the sampling interval very 
short, only a fraction of ‘MC steps per spin’. 

In fact the most offending part of data taking is not at criticality but at low 
energies. The worst case appears to be at Ne = 7 where it took time N, = 8737 to 
obtain 41 + 1 samples. Even in this case the average effective MC steps per spin is less 
than 0.25. In any case inefficiency at low energies (equivalently at low temperatures) 
is not a unique problem of the new MCT but is also present in the conventional MCT 
for which various remedies are discussed by Binder (1973). These techniques can also 
be applied to the new MCT. There is also another remedy to this problem. Since 
at low energies configurations are simple as only a few spins are upturned, we can 
calculate o ( E ,  N + )  applying the counting method commonly used in calculations of 
the coefficients of the low temperature series expansion (Domb and Green 1974). We 
have used an elementary method to calculate w(N,,N+) for Ne up to 8 and listed it in 
appendix 1. However if one is not interested in free energy or entropy one can always 
start data taking at some high E .  

In summary the new MCT can be applied to any system with a discrete energy, 
where the conventional MCT can be used, for calculating static properties with very 
high efficiency. 
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Appendix 1. Exact o ( N , , N + )  of the square lattice for small N e  

Only non-vanishing o(Ne, N+)  for general N are given. 

w(0,O) = 1. 

o(1 , j )  = 0 

w(2,l)  = N. 

w(3,2) = 2N. 

~ ( 4 , 2 )  = N2/2 - 5N/2 

for all j .  

0(4,3) = 6N w(4,4) = N .  
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w(5,3) = 2N2 - 16N 0(5,4) = 18N w(5,5) = 8N 0(5,6) = 2N. 

0(6,3) = N3/6 - 5N2/2 + 31N/3 ~ ( 6 , 4 )  = 8N2 - 85N 

0(6,6) = 40N 0(6,7) = 22N 0(6,8) = 6N 0(6,9) = N. 

0(6,5) = N 2  + 43N 

0(7,4) = N 3  -21N2 + 118N 0(7,5) = 30N2 -4" w(7,6) = 10N2+30N 

~ ( 7 , " )  = 2N2 + 136N 

~ ( 7 , l O )  = 30N w(7 , l l )  = 8N 0(7,12) = 2N. 

0(7,8) = 134N w(7,9) = 72N 

~ ( 8 , 4 )  = N4/24 - 5N3/4 + 13&N2 - 52fN 

~ ( 8 , 6 )  = N3/2+94iN2-1651N 0(8,7) =62N2-486N 

0(8,5) = 5N3 - 132N2 + 926N. 

w(8,8)  = 26iN2 + 194iN. 

~ ( 8 , 9 )  = 6N2 + 540N 0(8,10) = N 2  + 461N o ( 8 , l l )  = 310N 

0(8,12) = 151N. 

0(8,13) = 68N ~ ( 8 , 1 4 )  = 22N w(8,15) = 6N w(8,16) = N 

Appendix 2. Table of microcanonical Monte Carlo data 

In this appendix we tabulate microcanonical MC data for Ne = 7 - 450. The second 
column is lnR(N,), the third, R(Ne) = Q(N,+l)/Q(N,), the fourth, M = (1  - N+/NI, the 
fifth, AM2 (1 - N+/N)2 - M 2 ,  the sixth, MC time which is defined by (13). Although 
AM2 is not used directly to calculate the canonical susceptibility (see (12) and (13)) it is 
included in the table because this quantity gives a measure of the spread of crl(N,, N+) 
over N f .  

Table 1. Table of microcanonical Monte Carlo data. 

Ne S l k  W e )  M AM2 Nt N e  S f k  R(Ne)  M AM2 Nt 

7 21.122 41.20 0.9910 O.oo00 8737 8 24.840 7.60 0.9908 O.oo00 2025 
9 26.868 26.78 0.9886 O.oo00 4902 10 30.155 8.91 0.9883 O.oo00 1908 

11 32.343 19.42 0.9862 O.oo00 3294 12 35.309 9.97 0.9856 O.oo00 1799 
13 37.609 15.91 0.9837 O.oo00 2381 14 40.376 10.28 0.9830 O.oo00 1614 
15 42.706 13.46 0.9812 O.oo00 1878 16 45.305 10.59 0.9802 O.oo00 1510 
17 47.665 12.07 0.9785 O.oo00 1631 18 50.156 10.72 0.9774 O.oo00 1425 
19 52.528 11.50 0.9758 O.oo00 1444 20 54.971 10.47 0.9746 O.oo00 1300 
21 57.319 10.89 0.9731 O.oo00 1294 22 59.707 10.30 0.9718 O.oo00 1185 
23 62.039 10.42 0.9703 O.oo00 1130 24 64.383 9.93 0.9690 O.oo00 1068 
25 66.678 9.81 0.9675 O.oo00 1034 26 68.962 9.85 0.9660 O.oo00 997 
27 71.250 9.58 0.9645 O.oo00 951 28 73.510 9.44 0.9629 O.oo00 918 
29 75.755 9.40 0.9615 O.oo00 901 30 77.995 9.23 0.9598 O.oo00 868 
31 80.217 9.27 0.9583 O.oo00 845 32 82.444 9.03 0.9568 O.oo00 792 
33 84.645 8.96 0.9553 O.oo00 763 34 86.838 8.65 0.9537 O.oo00 728 
35 88.996 8.71 0.9521 O.oo00 722 36 91.161 8.53 0.9505 O.oo00 699 
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Table 1. (continued) 

37 93.304 
39 97.585 
41 101.809 
43 106.013 
45 110.196 
47 114.322 
49 118.444 
51 122.494 
53 126.508 
55 130.526 
57 134.510 
59 138.497 
61 142.456 
63 146.380 
65 150.278 
67 154.154 
69 158.015 
71 161.864 
73 165.686 
75 169.488 
71 173.276 
79 177.048 
81 180.811 
83 184.554 
85 188.285 
87 192.001 
89 195.702 
91 199.386 
93 203.060 
95 206.726 
97 210.387 
99 214.026 

101 217.660 
103 221.273 
105 224.871 
107 228.464 
109 232.053 
111 235.633 
113 239.203 
115 242.774 
117 246.322 
119 249.864 
121 253.404 
123 256.925 
125 260.445 
127 263.957 
129 267.470 
131 270.974 
133 274.491 
135 277.977 
137 281.474 
139 284.973 
141 288.454 

8.59 
8.35 
8.20 
8.15 
7.88 
7.90 
7.57 
7.49 
7.52 
7.34 
7.39 
7.28 
7.22 
7.08 
7.01 
6.89 
6.89 
6.8 1 
6.70 
6.68 
6.62 
6.52 
6.52 
6.42 
6.39 
6.38 
6.34 
6.28 
6.22 
6.24 
6.20 
6.20 
6.12 
6.08 
6.04 
6.03 
5.99 
5.95 
5.99 
5.91 
5.86 
5.83 
5.82 
5.78 
5.82 
5.77 
5.76 
5.81 
5.74 
5.77 
5.78 
5.71 
5.65 

0.9488 
0.9455 
0.9422 
0.9394 
0.9357 
0.9323 
0.9288 
0.9247 
0.92 15 
0.9174 
0.9135 
0.9095 
0.9058 
0.90 18 
0.8979 
0.8936 
0.8884 
0.8855 
0.8802 
0.8756 
0.8691 
0.8659 
0.8608 
0.8554 
0.8477 
0.8456 
0.8371 
0.8329 
0.8271 
0.821 1 
0.8117 
0.8093 
0.8012 
0.7918 
0.7910 
0.7797 
0.7723 
0.7705 
0.7518 
0.7463 
0.7459 
0.7251 
0.7218 
0.7082 
0.6829 
0.6888 
0.6737 
0.6548 
0.6429 
0.6480 
0.61 88 
0.5841 
0.5911 

O.oo00 
O.oo00 
O.oo00 
O.oo00 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0002 
0.0002 
0.0002 
0.0002 
0.0003 
0.0002 
0.0003 
0.0003 
0.0005 
O.ooo4 
0.0005 
0.0005 
O.ooo9 
O.ooo6 
0.0013 
0.0010 
0.0010 
0.001 1 
0.0019 
0.0013 
0.0016 
0.0022 
0.0015 
0.0030 
0.0030 
0.0021 
0.0052 
0.0035 
0.0030 
0.0058 
0.0039 
0.0089 
0.0138 
0.0073 
0.0096 
0.0133 
0.01 50 
0.0112 
0.0196 
0.0240 
0.0161 

686 
638 
622 
59 1 
560 
537 
496 
480 
472 
459 
455 
439 
417 
403 
389 
383 
375 
360 
352 
344 
335 
331 
321 
316 
311 
305 
291 
292 
290 
288 
28 1 
277 
270 
264 
263 
260 
256 
255 
253 
246 
243 
242 
236 
237 
234 
234 
234 
234 
228 
231 
229 
223 
223 

38 95.454 
40 99.707 
42 103.914 
44 108.111 
46 112.260 
48 116.389 
50 120.468 
52 124.508 
54 128.525 
56 132.519 
58 136.510 
60 140.482 
62 144.433 
64 148.337 
66 152.225 
68 156.085 
70 159.945 
72 163.783 
74 167.589 
76 171.387 
78 175.167 
80 178.923 
82 182.685 
84 186.413 
86 190.140 
88 193.855 
90 197.549 
92 201.223 
94 204.888 
96 208.557 
98 212.212 

100 215.850 
102 219.472 
104 223.079 
106 226.670 
108 230.260 
110 233.844 
I12 237.416 
I14 240.993 
116 244.550 
118 248.091 
120 251.628 
122 255.166 
124 258.679 
126 262.206 
128 265.710 
130 269.221 
132 272.734 
134 276.239 
136 279.729 
138 283.228 
140 286.716 
142 290.185 

8.42 
8.18 
8.16 
8.04 
7.87 
7.81 
7.59 
7.39 
7.39 
7.32 
7.29 
7.20 
7.01 
6.96 
6.88 
6.89 
6.8 1 
6.71 
6.68 
6.61 
6.56 
6.6 1 
6.48 
6.50 
6.43 
6.34 
6.28 
6.28 
6.29 
6.23 
6.14 
6.11 
6.06 
6.00 
6.01 
6.01 
5.99 
5.97 
5.93 
5.88 
5.89 
5.91 
5.80 
5.85 
5.76 
5.82 
5.78 
5.80 
5.69 
5.72 
5.73 
5.68 
5.71 

0.9473 
0.9439 
0.9407 
0.9371 
0.9339 
0.9305 
0.9263 
0.9227 
0.9191 
0.9 154 
0.9117 
0.9076 
0.9032 
0.9002 
0.8953 
0.8903 
0.8867 
0.8823 
0.8760 
0.8738 
0.8672 
0.8630 
0.8580 
0.8533 
0.8478 
0.8426 
0.8335 
0.8310 
0.8261 
0.8178 
0.8103 
0.8025 
0.7983 
0.7930 
0.7846 
0.7707 
0.7694 
0.7670 
0.7359 
0.7457 
0.7288 
0.7340 
0.7220 
0.6997 
0.6971 
0.6743 
0.6683 
0.6475 
0.6397 
0.6217 
0.5906 
0.5829 
0.5820 

O.oo00 
O.oo00 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0002 
0.0002 
0.0002 
0.0002 
0.0003 
0.0003 
0.0003 
O.OOO4 
0.0003 
O.ooo6 
0.0005 
0.0006 
O.OOO6 
0.0007 
0.0007 
0.0013 
0.001 1 
O.OOO9 
0.0014 
0.0015 
0.0017 
0.0017 
0.0017 
0.0021 
0.0061 
0.0026 
0.0023 
0.0130 
0.0032 
0.0063 
0.0032 
0.0048 
0.0092 
0.0065 
0.0106 
0.0118 
0.0138 
0.0182 
0.0173 
0.0264 
0.0219 
0.0183 

655 
624 
611 
57 1 
556 
516 
48 5 
475 
460 
457 
444 
425 
403 
393 
382 
379 
366 
353 
347 
339 
333 
330 
319 
317 
309 
300 
294 
292 
291 
283 
278 
27 1 
265 
262 
26 1 
259 
255 
255 
248 
245 
245 
241 
237 
237 
233 
234 
235 
229 
227 
229 
226 
222 
22 1 
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143 291.927 
145 295.385 
147 298.844 
149 302.293 
151 305.746 
153 309.182 
155 312.624 
157 316.062 
159 319.480 
161 322.893 
163 326.308 
165 329.718 
167 333.108 
169 336.483 
171 339.861 
173 343.237 
175 346.599 
177 349.956 
179 353.300 
181 356.638 
183 359.963 
185 363.278 
187 366.584 
189 369.874 
191 373.144 
193 376.395 
195 379.642 
197 382.872 
199 386.097 
201 389.323 
203 392.544 
205 395.735 
207 398.906 
209 402.061 
211 405.213 
213 408.350 
215 411.466 
217 414.558 
219 417.641 
221 420.718 
223 423.786 
225 426.821 
227 429.842 
229 432.858 
231 435.848 
233 438.821 
235 441.787 
237 444.739 
239 447.677 
241 450.591 
243 453.487 
245 456.365 
247 459.230 

5.68 
5.59 
5.63 
5.63 
5.58 
5.58 
5.57 
5.56 
5.51 
5.49 
5.52 
5.42 
5.38 
5.43 
5.38 
5.38 
5.37 
5.32 
5.33 
5.28 
5.24 
5.24 
5.19 
5.13 
5.06 
5.10 
5.05 
5.04 
5.03 
5.02 
4.93 
4.87 
4.84 
4.86 
4.81 
4.74 
4.71 
4.69 
4.69 
4.65 
4.58 
4.52 
4.51 
4.48 
4.41 
4.41 
4.36 
4.36 
4.29 
4.30 
4.2 1 
4.20 
4.13 

0.5603 
0.5737 
0.5484 
0.5379 
0.5238 
0.5194 
0.4546 
0.4701 
0.4598 
0.4460 
0.3987 
0.3966 
0.3621 
0.3643 
0.3471 
0.3132 
0.3347 
0.3128 
0.2788 
0.2846 
0.2714 
0.2689 
0.251 1 
0.2551 
0.2282 
0.2376 
0.2307 
0.21 30 
0.2137 
0.1946 
0.1793 
0.1880 
0.1753 
0.1828 
0.1670 
0.1731 
0.1519 
0.1542 
0.1590 
0.1502 
0.1470 
0.1414 
0.1324 
0.1345 
0.1308 
0.1273 
0.1241 
0.1240 
0.1193 
0.1158 
0.1141 
0.1093 
0.103 1 

0.0256 
0.02 12 
0.0241 
0.0228 
0.0239 
0.0203 
0.0321 
0.0256 
0.028 1 
0.0277 
0.0308 
0.0286 
0.0324 
0.0307 
0.0292 
0.0282 
0.0269 
0.0264 
0.0264 
0.0264 
0.0246 
0.0239 
0.0234 
0.0220 
0.0201 
0.0223 
0.0199 
0.0175 
0.0183 
0.01 66 
0.0152 
0.0145 
0.0134 
0.0144 
0.0130 
0.0131 
0.0117 
0.0107 
0.0113 
0.01 10 
0.0098 
0.0093 
0.0093 
0.0088 
0.0084 
0.0080 
0.0076 
0.0077 
0.0074 
0.007 1 
0.0067 
0.0060 
0.0055 

216 
218 
215 
215 
21 1 
212 
21 1 
205 
204 
205 
201 
196 
195 
194 
193 
190 
188 
186 
183 
180 
178 
175 
171 
166 
164 
162 
159 
158 
158 
155 
149 
145 
144 
142 
138 
135 
131 
130 
128 
126 
121 
119 
118 
113 
111 
110 
108 
106 
103 
100 
98 
96 
93 

144 
146 
148 
150 
152 
154 
156 
158 
160 
162 
164 
166 
168 
170 
172 
174 
176 
178 
180 
182 
184 
186 
188 
190 
192 
194 
196 
198 
200 
202 
204 
206 
208 
210 
212 
214 
216 
218 
220 
222 
224 
226 
228 
230 
232 
234 
236 
238 
240 
242 
244 
246 
248 

293.665 
297.106 
300.573 
304.021 
307.465 
3 10.902 
3 14.341 
317.778 
321. I87 
324.595 
328.016 
331.408 
334.790 
338.175 
341.544 
344.920 
348.280 
35 1.627 
354.973 
358.302 
361.620 
364.934 
368.231 
371.510 
374.765 
378.024 
381.262 
384.490 
387.712 
390.936 
394.140 
397.319 
400.484 
403.643 
406.783 
409.906 
413.015 
416.103 
419.187 
422.254 
425.308 
428.329 
431.349 
434.358 
437.332 
440.305 
443.261 
446.212 
449.133 
452.049 
454.924 
457.800 
460.649 

5.59 
5.69 
5.59 
5.61 
5.57 
5.60 
5.59 
5.48 
5.51 
5.54 
5.49 
5.47 
5.43 
5.40 
5.43 
5.36 
5.35 
5.33 
5.29 
5.27 
5.25 
5.21 
5.17 
5.12 
5.10 
5.04 
5.01 
4.99 
5.01 
4.99 
4.93 
4.89 
4.84 
4.81 
4.79 
4.76 
4.68 
4.66 
4.62 
4.63 
4.54 
4.54 
4.52 
4.44 
4.43 
4.40 
4.39 
4.33 
4.29 
4.21 
4.22 
4.18 
4.13 

0.5559 
0.5523 
0.5526 
0.5183 
0.5122 
0.4743 
0.4505 
0.4375 
0.45 16 
0.4253 
0.3907 
0.4003 
0.3954 
0.3534 
0.3363 
0.3272 
0.3152 
0.2939 
0.2860 
0.2786 
0.2647 
0.2503 
0.2517 
0.2401 
0.2525 
0.2320 
0.2209 
0.2053 
0.1888 
0.2012 
0.1922 
0.1903 
0.1800 
0.1655 
0.1795 
0.1624 
0.1575 
0.1430 
0.1541 
0.1524 
0.1484 
0.1344 
0.1429 
0.1275 
0.1293 
0.1278 
0.1235 
0.1174 
0.1181 
0.1110 
0.1157 
0.1070 
0.1044 

0.0240 
0.0255 
0.0196 
0.0260 
0.0233 
0.0279 
0.0317 
0.0292 
0.0260 
0.0307 
0.0323 
0.028 1 
0.0288 
0.0274 
0.03 15 
0.0285 
0.0277 
0.0253 
0.0263 
0.0267 
0.0242 
0.0229 
0.0215 
0.0204 
0.0208 
0.0193 
0.0206 
0.0183 
0.0159 
0.01 51 
0.0157 
0.0139 
0.0140 
0.0130 
0.0133 
0.0126 
0.01 18 
0.0103 
0.0114 
0.0106 
0.0105 
O.Oo90 
0.0096 
0.0083 
0.0087 
0.0083 
0.0079 
0.0072 
0.0076 
0.0063 
0.0068 
0.006 1 
0.0056 

216 
218 
215 
212 
212 
212 
208 
203 
205 
205 
199 
196 
196 
194 
193 
189 
186 
185 
181 
179 
177 
173 
169 
165 
164 
159 
157 
157 
157 
152 
148 
145 
143 
140 
137 
133 
130 
129 
127 

123 
119 
119 
116 
112 
111 
109 
108 
104 
102 
98 
97 
94 
92 
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Table 1. (continued) 

249 462.067 
251 464.893 
253 467.729 
255 470.521 
257 473.296 
259 476.031 
261 478.761 
263 481.468 
265 484.185 
267 486.821 
269 489.468 
271 492.093 
273 494.684 
275 497.265 
277 499.802 
279 502.353 
281 504.886 
283 507.381 
285 509.866 
287 512.334 
289 514.783 
291 517.210 
293 519.609 
295 521.996 
297 524.340 
299 526.667 
301 528.970 
303 531.287 
305 533.566 
307 535.808 
309 538.012 
311 540.207 
313 542.341 
315 544.478 
317 546.596 
319 548.694 
321 550.762 
323 552.792 
325 554.793 
327 556.785 
329 558.747 
331 560.667 
333 562.602 
335 564.474 
337 566.322 
339 568.144 
341 569.970 
343 571.756 
345 573.509 
347 575.213 
349 576.912 
351 578.564 
353 580.185 

4.12 
4.14 
4.03 
4.00 
3.93 
3.96 
3.92 
3.86 
3.74 
3.78 
3.78 
3.65 
3.64 
3.55 
3.57 
3.57 
3.47 
3.46 
3.44 
3.42 
3.38 
3.30 
3.30 
3.23 
3.22 
3.16 
3.21 
3.12 
3.1 1 
2.99 
2.98 
2.90 
2.93 
2.90 
2.86 
2.85 
2.74 
2.77 
2.73 
2.66 
2.62 
2.65 
2.59 
2.55 
2.48 
2.48 
2.45 
2.38 
2.37 
2.38 
2.30 
2.25 
2.23 

0.1023 
0.0969 
0.1039 
0.0874 
0.0988 
0.0928 
0.0993 
0.0926 
0.0886 
0.093 1 
0.0835 
0.0825 
0.0824 
0.0878 
0.0751 
0.0784 
0.0768 
0.08 1 1 
0.0728 
0.0698 
0.0693 
0.0699 
0.0761 
0.0734 
0.0703 
0.0687 
0.0695 
0.0640 
0.0680 
0.0673 
0.0632 
0.0592 
0.0590 
0.0572 
0.0576 
0.0563 
0.0556 
0.0544 
0.0546 
0.0607 
0.0536 
0.0500 
0.0533 
0.05 18 
0.0500 
0.0459 
0.0485 
0.0482 
0.0467 
0.0460 
0.0478 
0.0454 
0.0452 

0.0058 
0.0050 
0.0056 
0.0044 
0.0049 
0.0044 
0.0047 
0.0044 
O.OO40 
0.0044 
0.0036 
0.0039 
0.0035 
O.OO40 
0.0032 
0.0032 
0.0029 
0.0034 
0.0029 
0.0026 
0.0027 
0.0028 
0.0032 
0.0029 
0.0025 
0.0024 
0.0024 
0.0024 
0.0026 
0.0024 
0.0021 
0.0020 
0.00 19 
0.00 19 
0.0018 
0.00 17 
0.00 16 
0.0016 
0.0017 
0.00 19 
0.0017 
0.0014 
0.00 16 
0.0015 
0.0015 
0.00 12 
0.0013 
0.0014 
0.0012 
0.0012 
0.00 12 
0.0012 
0.001 1 

92 
91 
87 
84 
82 
81 
78 
77 
72 
73 
69 
67 
65 
63 
64 
61 
59 
58 
57 
55 
53 
52 
51 
49 
47 
47 
46 
45 
42 
41 
39 
38 
37 
36 
36 
34 
33 
32 
31 
30 
29 
29 
27 
26 
26 
25 
24 
23 
23 
22 
21 
20 
20 

250 
252 
254 
256 
258 
260 
262 
264 
266 
268 
270 
272 
274 
276 
278 
280 
282 
284 
286 
288 
290 
292 
294 
296 
298 
300 
302 
304 
306 
308 
3 10 
312 
314 
316 
318 
320 
322 
324 
326 
328 
330 
332 
334 
336 
338 
340 
342 
344 
346 
348 
3 50 
352 
354 

463.483 
466.314 
469.123 
47 1.908 
474.664 
477.40s 
480.127 
482.818 
485.505 
488.150 
490.797 
493.388 
495.974 
498.530 
501.073 
503.626 
506.131 
508.621 
511.102 
513.563 
516.000 
518.404 
520.802 
523.168 
525.510 
527.818 
530.137 
532.423 
534.699 
536.903 
539.105 
541.273 
543.415 
545.543 
547.647 
549.739 
551.771 
553.81 1 
555.796 
557.765 
559.708 
561.640 
563.553 
565.411 
567.230 
569.051 
570.868 
572.621 
574.373 
576.081 
577.743 
579.373 
580.988 

4.09 
4.11 
4.05 
4.01 
3.92 
3.87 
3.82 
3.92 
3.73 
3.74 
3.65 
3.65 
3.63 
3.57 
3.60 
3.53 
3.49 
3.47 
3.43 
3.39 
3.35 
3.34 
3.30 
3.23 
3.18 
3.17 
3.16 
3.14 
3.03 
3.03 
3.01 
2.91 
2.89 
2.87 
2.85 
2.78 
2.78 
2.67 
2.69 
2.67 
2.61 
2.62 
2.51 
2.49 
2.49 
2.51 
2.43 
2.43 
2.32 
2.30 
2.27 
2.25 
2.24 

0.1021 
0.1052 
0.0947 
0.0986 
0.0992 
0.0980 
0.0932 
0.089 1 
0.0864 
0.0863 
0.08 13 
0.0900 
0.0832 
0.0822 
0.0803 
0.0727 
0.08 15 
0.0779 
0.0733 
0.0722 
0.0686 
0.0723 
0.0732 
0.0604 
0.0712 
0.0685 
0.0658 
0.0606 
0.0667 
0.0638 
0.0668 
0.0577 
0.0580 
0.0575 
0.0591 
0.0574 
0.0569 
0.0540 
0.0539 
0.0543 
0.0536 
0.05 12 
0.0525 
0.0483 
0.0478 
0.0505 
0.0461 
0.0503 
0.0467 
0.0450 
0.0489 
0.0447 
0.0447 

0.0056 
0.0054 
0.0049 
0.005 1 
0.005 1 
0.0052 
0.0049 
0.0039 
0.0038 
0.0036 
0.0039 
0.0041 
0.0037 
0.0034 
0.0034 
0.0028 
0.0035 
0.003 1 
0.003 1 
0.0029 
0.0028 
0.0030 
0.0029 
0.002 1 
0.0025 
0.0025 
0.0022 
0.0022 
0.0024 
0.0022 
0.0024 
0.00 19 
0.0019 
0.00 17 
0.0020 
0.0018 
0.00 17 
0.0016 
0.0016 
0.00 17 
0.0017 
0.0016 
0.00 15 
0.0015 
0.0014 
0.00 14 
0.0012 
0.0015 
0.00 12 
0.0011 
0.0012 
0.0012 
0.0012 

92 
89 
86 
83 
81 
78 
78 
75 
72 
71 
67 
67 
64 
63 
63 
60 
59 
58 
56 
55 
53 
52 
50 
48 
46 
47 
45 
44 
41 
41 
39 
38 
37 
36 
35 
33 
32 
31 
30 
29 
29 
28 
26 
26 
26 
25 
24 
23 
22 
21 
21 
20 
20 
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Table 1. (continued) 
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355 581.796 
357 583.396 
359 584.917 
361 586.429 
363 587.928 
365 589.390 
367 590.786 
369 592.152 
371 593.508 
373 594.851 
375 596.146 
377 597.402 
379 598.664 
381 599.852 
383 601.041 
385 602.145 
387 603.257 
389 604.353 
391 605.393 
393 606.423 
395 607.394 
397 608.339 
399 609.252 
401 610.120 
403 610.965 
405 611.783 
407 612.562 
409 613.283 
411 613.957 
413 614.619 
415 615.249 
417 615.863 
419 616.418 
421 616.919 
423 617.416 
425 617.882 
427 618.312 
429 618.683 
431 619.055 
433 619.421 
435 619.709 
437 619.952 
439 620.184 
441 620.384 
443 620.527 
445 620.633 
447 620.677 
449 620.734 

2.21 0.0429 0.0011 
2.14 0.0441 0.0011 
2.16 0.0451 0.0012 
2.15 0.0450 0.0012 
2.12 0.0434 0.0010 
2.00 0.0438 0.0010 
1.96 0.0386 O.OOO9 
1.97 0.0414 0.0010 
1.97 0.0409 0.0010 
1.91 0.0396 O.OOO9 
1.89 0.0395 O.OOO9 
1.87 0.0369 0.0007 
1.85 0.0384 0.0008 
1.84 0.0385 0.0008 
1.76 0.0364 0.0007 
1.74 0.0382 0.0008 
1.75 0.0380 0.0008 
1.69 0.0359 0.0007 
1.68 0.0363 0.0008 
1.63 0.0349 0.0007 
1.60 0.0335 O.OOO6 
1.61 0.0353 0.0007 
1.53 0.0335 0.0007 
1.52 0.0318 O.OOO6 
1.52 0.0322 O.OOO6 
1.48 0.0328 O.OOO6 
1.46 0.0337 O.OOO6 
1.38 0.0332 O.OOO6 
1.39 0.0314 O.OOO6 
1.37 0.0327 O.OOO6 
1.38 0.0309 0.0005 
1.33 0.0310 O.ooo6 
1.29 0.0292 0.0005 
1.29 0.0309 0.0005 
1.28 0.0293 O.OOO4 
1.24 0.0299 O.OOO4 
1.22 0.0299 0.0005 
1.20 0.0298 0.0005 
1.20 0.0293 0.0005 
1.16 0.0290 0.0005 
1.14 0.0281 0.0005 
1.12 0.0284 0.0005 
1.10 0.0277 0.0005 
1.08 0.0277 O.OOO4 
1.06 0.0272 O.OOO4 
1.02 0.0267 O.OOO4 
1.04 0.0260 o.OOO4 
1.02 0.0260 o.OOO4 

19 356 582.587 
18 358 584.156 
18 360 585.688 
18 362 587.196 
17 364 588.678 
16 366 590.081 
15 368 591.460 
15 370 592.831 
15 372 594.189 
14 374 595.498 
14 376 596.780 
14 378 598.029 
13 380 599.278 
13 382 600.460 
12 384 601.606 
12 386 602.697 
12 388 603.815 
11 390 604.879 
11 392 605.910 
10 394 606.914 
10 396 607.866 
10 398 608.815 
10 400 609.677 
9 402 610.541 
9 404 611.387 
9 406 612.174 
8 408 612.938 
8 410 613.607 
8 412 614.286 
8 414 614.934 
8 416 615.574 
8 418 616.149 
7 420 616.673 
7 422 617.176 
7 424 617.663 
7 426 618.101 
7 428 618.509 
7 430 618.866 
7 432 619.235 
I 434 619.571 
6 436 619.841 
6 438 620.070 
6 440 620.278 
6 442 620.451 
6 444 620.583 
6 446 620.653 
6 448 620.713 
6 450 620.753 

2.24 0.0443 0.0011 
2.14 0.0423 0.0010 
2.10 0.0439 0.0011 
2.08 0.0449 0.0011 
2.04 0.0432 0.0010 
2.02 0.0403 O.OOO9 
2.00 0.0404 o.OOO9 
1.97 0.0397 O.OOO9 
1.94 0.0405 O.OOO8 
1.91 0.0402 O.OOO9 
1.86 0.0383 0.0008 
1.89 0.0356 0.0007 
1.78 0.0386 0.0008 
1.79 0.0371 0.0008 
1.71 0.0369 0.0008 
1.75 0.0386 0.0008 
1.71 0.0365 0.0008 
1.67 0.0356 0.0007 
1.67 0.0359 0.0008 
1.62 0.0352 0.0007 
1.60 0.0342 0.0007 
1.55 0.0348 0.0007 
1.56 0.0315 O.OOO6 
1.53 0.0324 O.ooo6 
1.49 0.0313 O.OOO6 
1.47 0.0330 O.OOO6 
1.41 0.0343 0.0007 
1.42 0.0311 0.0005 
1.40 0.0324 O.OOO6 
1.37 0.0312 0.0005 
1.33 0.0309 0.0005 
1.31 0.0299 0.0005 
1.28 0.0298 0.0005 
1.27 0.0303 0.0005 
1.25 0.0295 O.OOO4 
1.23 0.0304 0.0005 
1.19 0.0302 0.0005 
1.21 0.0301 0.0005 
1.20 0.0287 0.0005 
1.15 0.0289 0.0005 
1.12 0.0282 O.ooo4 
1.12 0.0288 0.0005 
1.11 0.0275 O.OOO4 
1.07 0.0269 O.OOO4 
1.05 0.0260 O.OOO4 
1.02 0.0271 O.OOO4 
1.02 0.0258 O.OOO4 
1.02 o.oo00 o.oo00 

19 
18 
18 
17 
16 
16 
15 
15 
14 
14 
14 
13 
13 
12 
12 
12 
11 
11 
11 
10 
10 
10 
10 
9 
9 
9 
8 
8 
8 
8 
8 
7 
7 
7 
7 
7 
7 
7 
7 
6 
6 
6 
6 
6 
6 
6 
6 
6 
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